6.1: Complex Numbers, Vectors and Matrices (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    21833
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Complex Numbers

    A complex number is simply a pair of real numbers. In order to stress however that the two arithmetics differ we separate the two real pieces by the symbol \(i\). More precisely, each complex number, \(z\), may be uniquely expressed by the combination \(x+iy\), where \(x\) and \(y\) are real and \(i\) denotes \(\sqrt{-1}\). We call \(x\) the real part and \(y\) the imaginary part of z. We now summarize the main rules of complex arithmetic.

    If \(z_{1} = x_{1}+iy_{1}\) and \(z_{2} = x_{2}+iy_{2}\) then

    Definition: Complex Addition

    \[z_{1}+z_{2} \equiv x_{1}+x_{2}+i(y_{1}+y_{2}) \nonumber\]

    Definition: Complex Multiplication

    \[z_{1}+z_{2} \equiv (x_{1}+iy_{1})(x_{2}+iy_{2}) = x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{2}y_{1}) \nonumber\]

    Definition: Complex Conjugation

    \[\overline{z_{1}} \equiv x_{1}-iy_{1} \nonumber\]

    Definition: Complex Division

    \[\frac{z_{1}}{z_{2}} \equiv \frac{z_{1}}{z_{2}} \frac{\overline{z_{2}}}{\overline{z_{2}}} = \frac{x_{1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}} \nonumber\]

    Definition: Magnitude of a Complex Number

    \[|z_{1}| \equiv = \sqrt{z_{1} \overline{z_{1}}} = \sqrt{x_{1}^{2}+y_{1}^{2}} \nonumber\]

    Polar Representation

    In addition to the Cartesian representation \(z = x+iy\) one also has the polar form

    \[z = |z|(\cos(\theta)+i \sin(\theta)) \nonumber\]

    where \(\theta = \arctan(yx)\)

    This form is especially convenient with regards to multiplication. More precisely,

    \[\begin{align*} z_{1}z_{2} &= |z_{1}||z_{2}|(\cos(\theta_{1})\cos(\theta_{2})-\sin(\theta_{1})\sin(\theta_{2})+i(\cos(\theta_{1}) \sin(\theta_{2})+\sin(\theta_{1}) \cos(\theta_{2}))) \\[4pt] &=|z_{1}||z_{2}|(\cos(\theta_{1}+\theta_{2})+i \sin(\theta_{1}+\theta_{2})) \end{align*}\]

    As a result:

    \[z^{n} = (|z|)^{n}(\cos(n \theta)+i \sin(n \theta)) \nonumber\]

    Complex Vectors and Matrices

    A complex vector (matrix) is simply a vector (matrix) of complex numbers. Vector and matrix addition proceed, as in the real case, from elementwise addition. The dot or inner product of two complex vectors requires, however, a little modification. This is evident when we try to use the old notion to define the length of a complex vector. To wit, note that if:

    \[z = \begin{pmatrix} {1+i}\\ {1-i} \end{pmatrix} \nonumber\]

    then

    \[z^{T} z = (1+i)^2+(1-i)^2 = 1+2i-1+1-2i-1 = 0 \nonumber\]

    Now length should measure the distance from a point to the origin and should only be zero for the zero vector. The fix, as you have probably guessed, is to sum the squares of the magnitudes of the components of \(z\). This is accomplished by simply conjugating one of the vectors. Namely, we define the length of a complex vector via:

    \[(z) = \sqrt{\overline{z}^{T} z} \nonumber\]

    In the example above this produces

    \[\sqrt{(|1+i|)^2+(|1-i|)^2} = \sqrt{4} = 2 \nonumber\]

    As each real number is the conjugate of itself, this new definition subsumes its real counterpart.

    The notion of magnitude also gives us a way to define limits and hence will permit us to introduce complex calculus. We say that the sequence of complex numbers, \(\left \{ z_{n}| n = \begin{pmatrix} {1}\\ {2}\\ {\cdots} \end{pmatrix} \right \} \nonumber\), converges to the complex number \(z_{0}\) and write

    \[z_{n} \rightarrow z_{0} \nonumber\]

    or

    \[z_{0} = \lim_{n \rightarrow \infty} z_{n} \nonumber\]

    when, presented with any \(\epsilon > 0\) one can produce an integer \(N\) for which \(|z_{n}-z_{0}| < \epsilon\) when \(n \ge N\). As an example, we note that \((\frac{i}{2})^{n} \rightarrow 0\).

    Example \(\PageIndex{1}\)

    As an example both of a complex matrix and some of the rules of complex arithmetic, let us examine the following matrix:

    \[F = \begin{pmatrix} {1}&{1}&{1}&{1}\\ {1}&{i}&{-1}&{-i}\\ {1}&{-1}&{1}&{-1}\\ {1}&{-i}&{-1}&{i} \end{pmatrix} \nonumber\]

    Let us attempt to find \(F \overline{F}\). One option is simply to multiply the two matrices by brute force, but this particular matrix has some remarkable qualities that make the job significantly easier. Specifically, we can note that every element not on the diagonal of the resultant matrix is equal to 0. Furthermore, each element on the diagonal is 4. Hence, we quickly arrive at the matrix

    \[\begin{align*} F \overline{F} &= \begin{pmatrix} {4}&{0}&{0}&{0}\\ {0}&{4}&{0}&{0}\\ {0}&{0}&{4}&{0}\\ {0}&{0}&{0}&{4} \end{pmatrix} \\[4pt] &= 4i \end{align*}\]

    This final observation, that this matrix multiplied by its transpose yields a constant times the identity matrix, is indeed remarkable. This particular matrix is an example of a Fourier matrix, and enjoys a number of interesting properties. The property outlined above can be generalized for any \(F_{n}\), where \(F\) refers to a Fourier matrix with \(n\) rows and columns:

    \[F_{n} \overline{F}_{n} = nI \nonumber\]

    6.1: Complex Numbers, Vectors and Matrices (2024)

    References

    Top Articles
    Pickles Restaurant Brimley Mi Menu
    Payton Preslee Nika Venom
    Tmf Saul's Investing Discussions
    Cars & Trucks - By Owner near Kissimmee, FL - craigslist
    Beacon Schnider
    Noaa Swell Forecast
    Minn Kota Paws
    Space Engineers Projector Orientation
    Helloid Worthington Login
    Slope Unblocked Minecraft Game
    อพาร์ทเมนต์ 2 ห้องนอนในเกาะโคเปนเฮเกน
    Valentina Gonzalez Leak
    104 Whiley Road Lancaster Ohio
    Stihl Km 131 R Parts Diagram
    Locate At&T Store Near Me
    3476405416
    Ms Rabbit 305
    White Pages Corpus Christi
    Walgreens Alma School And Dynamite
    Between Friends Comic Strip Today
    Reicks View Farms Grain Bids
    Airline Reception Meaning
    Hdmovie2 Sbs
    Malluvilla In Malayalam Movies Download
    Busted Mugshots Paducah Ky
    No Limit Telegram Channel
    Shelby Star Jail Log
    Delta Township Bsa
    Jailfunds Send Message
    Primerica Shareholder Account
    Babbychula
    Peter Vigilante Biography, Net Worth, Age, Height, Family, Girlfriend
    SOC 100 ONL Syllabus
    Is Arnold Swansinger Married
    How To Paint Dinos In Ark
    Cherry Spa Madison
    Cal Poly 2027 College Confidential
    Best Restaurants Minocqua
    Dcilottery Login
    Tripadvisor Vancouver Restaurants
    Chathuram Movie Download
    Autum Catholic Store
    Winta Zesu Net Worth
    Powerboat P1 Unveils 2024 P1 Offshore And Class 1 Race Calendar
    Air Sculpt Houston
    The Many Faces of the Craigslist Killer
    Ephesians 4 Niv
    Premiumbukkake Tour
    Thrift Stores In Burlingame Ca
    Kobe Express Bayside Lakes Photos
    Lorcin 380 10 Round Clip
    Ff14 Palebloom Kudzu Cloth
    Latest Posts
    Article information

    Author: Melvina Ondricka

    Last Updated:

    Views: 6198

    Rating: 4.8 / 5 (68 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Melvina Ondricka

    Birthday: 2000-12-23

    Address: Suite 382 139 Shaniqua Locks, Paulaborough, UT 90498

    Phone: +636383657021

    Job: Dynamic Government Specialist

    Hobby: Kite flying, Watching movies, Knitting, Model building, Reading, Wood carving, Paintball

    Introduction: My name is Melvina Ondricka, I am a helpful, fancy, friendly, innocent, outstanding, courageous, thoughtful person who loves writing and wants to share my knowledge and understanding with you.